Please do not hesitate to contact us ( if you see any topics that we could collaborate. We are very open to new ideas and suggestions and open to collaborations with researchers from both academia and industry.


Presentations of recent publications and computational source codes including (1) element deletion method, (2) manual mesh moving method, (3) UMESHMOTION+ALE examples, and (4) 1D charring ablation code can be found on: Dr. Wang's Research Google Site

 Research Topics


Mechanics and Failure Mechamisms of Composite Materials

Understanding the fundamental mechanics and failure mechanisms of composite materials is of great significance to the design and development of next generation composite structures. For example, to establish the minimum gage thickness of innovative fuselage composite structure designs. We investigate the deformation, fracture, and fatigue as well as joining of composite materials. In addition, we assess the damage tolerance and durability of composites. Through experimental testing and computational modeling, we aim to discern the material behavior and failure mechanisms under different mechanical loading conditions. The understanding we acquired will be used to guide the design and development of composite structures.


Testing machines in the SU-CML: Two MTS and one Instron servohydraulic testing machines, cryogenic and high temperature chambers, various ASTM and custom testing fixtures, C-scan, and optical microscope system, and etc.



Lightning Strike Interaction with Composite Materials

Data on lightning strike frequency to US commercial aircrafts has revealed that one strike is expected approximately per year per plane. Understanding the lightning strike damage mechanisms of composite materials is of great significance in the design and development of lightning strike protection (LSP) systems for aircraft and wind turbine blades. We aim to investigate the fundamental damage mechanisms of composite materials subjected to lightning strikes and seek solutions to enhance the electrical conductivity and mitigate lightning strike damage. We not only develop computational models but also conduct simulated lightning strike tests and develop novel lightweight and conductive composite materials for lightning strike damage mitigation.


Computational source codes: Progressive Element Deletion Method






Laser Manufacturing and Processing of Composite Structures

The recent rapid development of pulsed laser ablation (PLA) have proven in wide-range applications, such as laser subtractive manufacturing of CFRP composites, laser surface preparation for improving the joint strength of adhesively bonded composite joints, and laser surface processing for multifunctionality. The laser ablation mechanisms of the composite materials are still widely unexplored. A comprehesive understanding of fundamental laser ablation mechanisms would allow us to optimize the laser ablation process for enhanced performance and reduced cost. To obtain such understanding, we develop computational models of laser ablation of composite materials and carry out laser experimental tests for model validations.


Computational source codes: Manual Mesh Moving Procedure



Fire Charring Ablation of Composite Materials

Charring ablation is an important physical process of composite materials when they are exposed to fire, combustion, and atmoshperic entry. Understanding the ablation mechanisms are of great significance in the design and development of next generation thermal protection systems. We have developed a 1D charring ablation model using Finite Element Analysis with ABAQUS and multiple user subroutines. The model with the TACOT 3.0 material system predicts the temperature change, shape change, and charring yield of the material. It has been verified by comparisions with predictions from NASA FIAT. Model validations have also been carried out through comparisons with ablation test data provided by Dr. Joseph Koo's research group at the University of Texas at Austin. The ABAQUS subroutines are currently copyright protected through University of Florida.


Resources: Theoretical Ablative Composite for Open Testing (TACOT 3.0) Material System





Machine Learning and Design Optimization

The problem of multiphysics analysis of solid materials (e.g., lightning strike of composites, laser/plasma manufacturing of composites, and curing of composites) is complex due to the large nonlinearity of the governing equations, potential moving boundary conditions, and temperature-dependent material parameters. Solving these complex governing equations is challenging, which typically requires using numerical simulations, such as using finite element analysis or finite volume method. Despite continued success and evolution, these methods rely on sophisticated numerical discretization, intricate fluid-material coupling strategies, and linear solvers to ensure stability, robustness, and efficiency. The application of these methods is complex and computationally prohibitive, especially when the material response model is coupled with a flow solver. An alternative is to develop cost-effective surrogate models. Our lab is developing machine learning algorithms to build surrogate models to greatly reduce the computational time of solving governing equations (from several days to a few minutes) for fast design and optimizations.