2024

  1. Lin, W., Wang, Y., & Davidson D. B. (2024). Negative Poisson's Ratio Can Enhance Stability of Layered Composite Structures. Thin-walled Structures, 205(B), 112409. https://doi.org/10.1016/j.tws.2024.112409.
  2. Wang, Y., Fan, Y., & Zhupanska, O. I. (2024). Challenges and Future Recommendations for Lightning Strike Damage Assessments of Composites: Laboratory Testing and Predictive Modeling. Materials, 17(3), 744. https://doi.org/10.3390/ma17030744.
  3. Tarafdar, A., Lin, W., Naderi, A., Wang, X., Fu, K. K., Hosein, I. D., & Wang, Y. (2024) UV-induced frontal polymerization for optimized in-situ curing of epoxy resin for excellent tensile and flexural properties. Composites Communications, 46, 101832. https://doi.org/10.1016/j.coco.2024.101832.
  4. Shen, H. S., Fan, Y., & Wang, Y. (2024). Tension buckling and postbuckling of nanocomposite laminated plates with in-plane negative Poisson’s ratio. Nanotechnology Reviews, 13(1), 20230173.

 


2023

  1. Tarafdar, A., Jia, C., Hu, W., Hosein, I. D., Fu, K. K., & Wang, Y. (2023). Three-dimensional modeling of frontal polymerization for rapid, efficient, and uniform thermoset composites manufacturing. Composites Part B: Engineering, 266, 111029. https://doi.org/10.1016/j.compositesb.2023.111029. [PDF]
  2. Lin, W. & Wang, Y. (2023). Low velocity impact behavior of auxetic CFRP composite laminates with in-plane negative Poisson’s ratio. Journal of Composite Materials, 57(12):2029-2042. https://doi.org/10.1177/00219983231168698. [PDF]
  3. Kumar, V., Lin, W., Wang, Y., Spencer, R., Saha, S., Park, C., ... & Kunc, V. (2023). Enhanced through-thickness electrical conductivity and lightning strike damage response of interleaved vertically aligned short carbon fiber composites. Composites Part B: Engineering, 253, 110535. https://doi.org/10.1016/j.compositesb.2023.110535. [PDF]
  4. Liu, Y., Xiao, C., Shen, S., Wang, Y., & Williams, E. (2023). Indirect electrode or direct electrode?: A revisitation of electrode configuration in simulated lightning damage testing. Electric Power Systems Research, 217, 109101. https://doi.org/10.1016/j.epsr.2022.109101. [PDF]

 


2022

  1. Wang, Y. (2022). Auxetic Composite Laminates with Through-Thickness Negative Poisson’s Ratio for Mitigating Low Velocity Impact Damage: A Numerical Study. Materials, 15, 6963. https://doi.org/10.3390/ma15196963. [PDF], [Abaqus input file for the benchmark low velocity impact model of CFRP (see Section 4.1 in the paper)], [VUMAT subroutine for the low velocity impact model]
  2. Wang, Y. (2022). Modeling the through-thickness frontal polymerization of unidirectional carbon fiber thermoset composites: Effect of microstructures. Journal of Applied Polymer Science, 139(31), e52735. https://doi.org/10.1002/app.52735. [PDF]
  3. Lin, W., Wang, Y., Yousefpour, K., Park, C., & Kumar, V. (2022). Evaluating the Lightning Strike Damage Tolerance for CFRP Composite Laminates Containing Conductive Nanofillers. Applied Composite Materials, 29, 1537–1554. https://link.springer.com/article/10.1007/s10443-022-10028-1. [PDF]

 


2021

  1. Zhang, Z., Zhang, Q., Wang, Y., & Xu, J. (2021). Modeling of the temperature field in nanosecond pulsed laser ablation of single crystalline diamond. Diamond and Related Materials, 116, 108402. https://doi.org/10.1016/j.diamond.2021.108402.
  2. Hu, W., Chen, W., Wang, X., Jiang, Z., Wang, Y., Verma, A. S., & Teuwen, J. J. (2021). A computational framework for coating fatigue analysis of wind turbine blades due to rain erosion. Renewable Energy, 170, 236-250. https://doi.org/10.1016/j.renene.2021.01.094.
  3. Liu, Y., & Wang, Y. (2021). Is Indirect Electrode a Good Choice for Simulated Lightning Damage Tests?—The Effect of Metal Vapor. IEEE Transactions on Plasma Science, 49(5), 1661-1668. 10.1109/TPS.2021.3073534. [PDF], [UPM-FEM lightning strike electric arc plasma COMSOL model used in the paper]
  4. Liu, Y., & Wang, Y. (2021). Modeling the lightning continuing current electric arc discharge and material thermal damage: Effects of combinations of amplitude and duration. International Journal of Thermal Sciences, 162, 106786. https://doi.org/10.1016/j.ijthermalsci.2020.106786. [PDF], [UPM-FEM lightning strike electric arc plasma COMSOL model used in the paper]
  5. Fan, Y., & Wang, Y. (2021). The effect of negative Poisson’s ratio on the low-velocity impact response of an auxetic nanocomposite laminate beam. International Journal of Mechanics and Materials in Design, 17(1), 153-169. https://link.springer.com/article/10.1007/s10999-020-09521-x. [PDF]

 


2020

  1. Yousefpour, K., Lin, W., Wang, Y., & Park, C. (2020). Discharge and ground electrode design considerations for the lightning strike damage tolerance assessment of CFRP matrix composite laminates. Composites Part B: Engineering, 198, 108226. https://doi.org/10.1016/j.compositesb.2020.108226.
  2. Lin, W., Wang, Y., Aider, Y., Rostaghi-Chalaki, M., Yousefpour, K., Kluss, J., ... & Hu, W. (2020). Analysis of damage modes of glass fiber composites subjected to simulated lightning strike impulse voltage puncture and direct high voltage AC puncture. Journal of Composite Materials, 54(26), 4067-4080. https://doi.org/10.1177/0021998320927736. [PDF]
  3. Liu, Y., Guha, A., Montanya, J., Wang, Y., & Fu, Z. (2020). Effects of single impulse current and multiwaveform multipulse currents on aluminum alloy in lightning damage analysis. IEEE Transactions on Plasma Science, 48(4), 1146-1153. https://doi.org/10.1109/TPS.2020.2977930.
  4. Hu, W., Wang, X., Chen, W., Wang, Y., Liu, Z., Tan, J., ... & Barthelmie, R. J. (2020). A computational model of wind turbine blade erosion induced by raindrop impact. In Journal of Physics: Conference Series (Vol. 1452, No. 1, p. 012048). IOP Publishing. https://doi.org/10.1088/1742-6596/1452/1/012048.
  5. Hu, W., Zhao, W., Wang, Y., Liu, Z., & Tan, J. (2020). Reliability Analysis of Wind Turbine Blades Considering Lightning Strike. In Journal of Physics: Conference Series (Vol. 1452, No. 1, p. 012049). IOP Publishing. https://doi.org/10.1088/1742-6596/1452/1/012049.

 


2019

  1. Hu, W., Zhao, W., Wang, Y., Liu, Z., Cheng, J., & Tan, J. (2020). Design optimization of composite wind turbine blades considering tortuous lightning strike and non-proportional multi-axial fatigue damage. Engineering Optimization, 52(11), 1868-1886. https://doi.org/10.1080/0305215X.2019.1690649.
  2. Wang, Y., & Hahn, D. W. (2019). A simple finite element model to study the effect of plasma plume expansion on the nanosecond pulsed laser ablation of aluminum. Applied Physics A, 125(9), 1-15. https://doi.org/10.1007/s00339-019-2951-8. [PDF]
  3. Wang, Y., Risch, T. K., & Koo, J. H. (2019). Assessment of a one-dimensional finite element charring ablation material response model for phenolic-impregnated carbon ablator. Aerospace Science and Technology, 91, 301-309. https://doi.org/10.1016/j.ast.2019.05.039. [PDF]
  4. Chua, B. L., Lee, H. J., Ahn, D. G., & Wang, Y. (2019). A study on activation algorithm of finite elements for three-dimensional transient heat transfer analysis of directed energy deposition process. International Journal of Precision Engineering and Manufacturing, 20(5), 863-869. https://doi.org/10.1007/s12541-019-00118-9.

 


2018

  1. Wang, Y., Risch, T. K., & Pasiliao, C. L. (2018). Modeling of Pyrolyzing ablation problem with ABAQUS: a one-dimensional test case. Journal of Thermophysics and Heat Transfer, 32(2), 544-546. https://doi.org/10.2514/1.T5274. [PDF]
  2. Wang, Y., Befekadu, G. K., Ding, H., & Hahn, D. W. (2018). Uncertainty quantification for modeling pulsed laser ablation of aluminum considering uncertainty in the temperature-dependent absorption coefficient. International Journal of Heat and Mass Transfer, 120, 515-522. https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.068.
  3. Wang, Y., & Pasiliao, C. L. (2018). Modeling ablation of laminated composites: a novel manual mesh moving finite element analysis procedure with ABAQUS. International Journal of Heat and Mass Transfer, 116, 306-313. https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.038. [Codes for Manual Mesh Moving demonstrative model], [Codes for UMESHMOTION for Ablation demonstrative model]
  4. Wang, Y., & Zhupanska, O. I. (2018). Modeling of thermal response and ablation in laminated glass fiber reinforced polymer matrix composites due to lightning strike. Applied Mathematical Modelling, 53, 118-131. https://doi.org/10.1016/j.apm.2017.08.019. [Codes for Element Deletion for Ablation demonstrative model]

 


 2017

  1. Wang, Y., Shen, N., Befekadu, G. K., & Pasiliao, C. L. (2017). Modeling pulsed laser ablation of aluminum with finite element analysis considering material moving front. International Journal of Heat and Mass Transfer, 113, 1246-1253. https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.056. [Abaqus input file for the 2D PLA case with 266 nm laser], [DFLUX and UMESHMOTION subroutines for the 2D PLA model with 266 nm laser]
  2. Wang, Y. (2017). Multiphysics analysis of lightning strike damage in laminated carbon/glass fiber reinforced polymer matrix composite materials: A review of problem formulation and computational modeling. Composites Part A: Applied Science and Manufacturing, 101, 543-553. https://doi.org/10.1016/j.compositesa.2017.07.010.
  3. Wang, Y., & Hu, W. (2017). Investigation of the effects of receptors on the lightning strike protection of wind turbine blades. IEEE Transactions on Electromagnetic Compatibility, 59(4), 1180-1187. https://doi.org/10.1109/TEMC.2016.2647260. [PDF]
  4. Wang, Y., & Zhupanska, O. I. (2017). Estimation of the electric fields and dielectric breakdown in non‐conductive wind turbine blades subjected to a lightning stepped leader. Wind Energy, 20(5), 927-942. https://doi.org/10.1002/we.2071. [PDF]

 


 2015

  1. Wang, Y., & Zhupanska, O. I. (2015). Lightning strike thermal damage model for glass fiber reinforced polymer matrix composites and its application to wind turbine blades. Composite structures, 132, 1182-1191. https://doi.org/10.1016/j.compstruct.2015.07.027.

 


 2012

  1. Shi, B. J., Wang, Y. Q., Liu, S. L., & Tian, H. Y. (2012). Design method of the parameters of tools for clinching technology. In Advanced Materials Research (Vol. 455, pp. 1491-1496). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/AMR.455-456.1491.
  2. Shi, B. J., Peng, S., Liu, S. L., & Wang, Y. Q. (2012). Simulation analysis of the mechanical clinch joining process based on the GTN model. Cailiao Kexue yu Gongyi/Material Science and Technology, 20(2), 86-89. http://en.cnki.com.cn/Article_en/CJFDTOTAL-CLKG201202017.htm.

2023

  1. Hoe, A.*, Lin, W., Wang, Y. (2023). A Compositional Study of Regolith Composites With Carbon Nanotube Additives For Extraterrestrial Construction. In SSDM 2023 ASME Aerospace Structures, Structural Dynamics, and Materials Conference, San Diego, CA, June 19-21, 2023. [PDF].
  2. Naderi, A.*, Taradfar A., Lin, W., Wang, Y. (2023). Tensile Properties of Unidirectional Polymer Composites Reinforced by Aligned Carbon Nanotube Yarns. In 38th Annual American Society for Composites Technical Conference, Boston, MA, September 17-20, 2023. [PDF].
  3. Tricarico, A.*, Lin, W., Wang, Y. (2023). High Buckling Strength of Auxetic Carbon Fiber Composite Laminates. In 38th Annual American Society for Composites Technical Conference, Boston, MA, September 17-20, 2023. [PDF].
  4. Tarafdar, A.*, Woodbury, C., Naderi A., Wang, X., Lin, W., Hosein, I., Wang, Y. (2023). Mechanical Characterization of Epoxy Resin Manufactured Using Frontal Polymerization. In 38th Annual American Society for Composites Technical Conference, Boston, MA, September 17-20, 2023. [PDF].

 


2022

  1. Lin, W.*, Wang, Y. (2022). Effect of Negative Poisson's Ratio on the Tensile Properties of Auxetic CFRP Composites. In 37th Annual American Society for Composites Technical Conference, Tucson, Arizona, September 19-21, 2022. [PDF].
  2. Wang, Y.*, Lampkin, S. (2022). Rapid Curing of Epoxy Resin using Self-sustained Frontal Polymerization Towards the Additive Manufacturing of Thermoset Fiber Composites. In 37th Annual American Society for Composites Technical Conference, Tucson, Arizona, September 19-21, 2022. [PDF].

 


2021

  1. Lin, W.*, Wang, Y., Lampkin, S., Prasad, S., Zhupanska, O., Davidson, B. (2021). Bond Strength Degradation of Adhesive-Bonded CFRP Composite Lap Joints after Lightning Strike. In 36th Annual American Society for Composites Technical Conference, ASC 2021 (September 21-24, virtual conference). [PDF].

 


2020

  1. Lin, W.*, Wang, Y., Lampkin, S., Philips, W., Prabhakar, S., Smith, R., ... & Rhee, H. (2020). Hail impact testing of stitched carbon fiber epoxy composite laminates. In 35th Annual American Society for Composites Technical Conference, ASC 2020 (pp. 731-745). DEStech Publications. [PDF].
  2. Lin, W., Jony, B., Yousefpour, K., Wang, Y.*, Park, C., & Roy, S. (2020). Effects of Graphene Nanoplatelets on the Lightning Strike Damage Response of Carbon Fiber Epoxy Composite Laminates. In Proceedings of the American Society for Composites 35th Technical Conference. [PDF].
  3. Fan, Y., & Wang, Y.* (2020). A Study on Effect of Auxeticity on Impact Resistance of Carbon Nanotube Reinforced Composite Laminates. In Proceedings of the American Society for Composites—Thirty-fifth Technical Conference. [PDF].
  4. Kumar, V.*, Kore, S. S., Theodore, M., Wang, Y., Yousefpour, K., Lin, W., ... & Kunc, V. (2020). Low cost carbon fiber as potential lightning strike protection for wind turbine blades. In 35th Annual American Society for Composites Technical Conference, ASC 2020 (pp. 565-573). DEStech Publications. [PDF].
  5. Yousefpour, K., Chalaki, M. R., Lin, W., Haque, F., Wang, Y., & Park, C. (2020, June). The Impact of Lightning Channel Diameter on the Damage of Carbon Fiber Reinforced Polymer Matrix (CFRP) Composite Laminates. In 2020 IEEE Electrical Insulation Conference (EIC) (pp. 128-131). IEEE.
  6. Yousefpour, K., Lin, W., Wang, Y., & Park, C. (2020, October). Protection of Carbon Fiber Reinforced Polymer Matrix (CFRP) Composite Laminate Against Lightning Strike Using Nano-Fillers. In 2020 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP) (pp. 35-38). IEEE.

 


2019

  1. Aider, Y.*, Wang, Y., Abdelal, G. F., & Zhupanska, O. I., Modeling of the Electric Arc Plasma Discharge Produced by a Lightning Strike Continuing Current, 2019 ICOLSE International Conference on Lightning And Static Electricity, September 11-13, 2019, Wichita, Kansas, USA. [PDF].
  2. Ganti, H.*, Wang, Y., & Belk, D. M., Modeling and Linear Analysis of Stitched Carbon Fiber Epoxy Composite Laminates for Mode I Delamination, American Society for Composites 34th Annual Technical Conference, Atlanta, GA, USA, September 23-25, 2019. [PDF].
  3. Lampkin, S., Lin, W., Rostaghi-Chalaki, M., Yousefpour, K., Wang, Y.*, & Kluss, J., Epoxy Resin with Carbon Nanotube Additives for Lightning Strike Damage Mitigation of Carbon Fiber Composite Laminates, American Society for Composites (ASC) 34th Annual Technical Conference, Atlanta, GA, USA, September 23-25, 2019. [PDF].

 


2018

  1. Wang, Y.*, Diaz, D., & Hahn, D. W., “Ablation Characteristics of Nanosecond Laser Pulsed Ablation of Aluminum,” ASME 2018 International Mechanical Engineering Congress and Exposition (IMECE), Pittsburgh, PA, Nov. 11-15, 2018.
  2. Hu, W.*, Jiang, Z., & Wang, Y., “Reliability analysis of offshore wind turbines using copula,” ASME 2018 Power and Energy Conference, Lake Buena Vista, FL, June 24-28, 2018.
  3. Zhupanska, O. I., & Wang, Y., “Modeling of Lightning Strike Effects in the Fiber-Reinforced Polymer Matrix Composites”, 2018 SCITECH/AIAA/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Orlando, FL, 2018.

 


 2017

  1. Wang, Y.*, Befekadu, G. K., & Pasiliao, C. L., “Uncertainty Quantification for Laser Ablation of Aluminum,” ASME 2017 International Mechanical Engineering Congress and Exposition (IMECE), Tampa, FL, Nov. 5-8, 2017.
  2. Wang, Y.*, Zhupanska, O. I., & Pasiliao, C. L., “Verification of a Manual Mesh Moving Finite Element Analysis Procedure for Modeling Ablation in Laminated Composite Materials,” ASME 2017 International Mechanical Engineering Congress and Exposition (IMECE), Tampa, FL, Nov. 5-8, 2017.
  3. Hu, W.*, & Wang, Y., “Optimization Design of Composite Wind Turbine Blades Integrating Lightning Strike Analysis,” ASME 2017 10th International Conference on Energy Sustainability, Charlotte, NC, June 26-30, 2017.

 


 2016

  1. Wang, Y.*, Zhupanska, O. I., & Pasiliao, C., “Simulation of Lightning-Strike-Induced Thermal Ablation in Unprotected Carbon Fiber Polymer Matrix Composite Laminates,” ASME 2016 International Mechanical Engineering Congress and Exposition, Phoenix, Arizona, Nov. 11-17, 2016.
  2. Wang, Y.*, & Zhupanska, O. I., “Thermal Ablation in Fiber-Reinforced Composite Laminates Subjected to Continuing Lightning Current,” 2016 SCITECH/AIAA/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, San Diego, CA, 2016.

 


 2015 and earlier

  1. Wang, Y.*, & Zhupanska, O. I., “Lightning-Strike-Induced Heat Transfer in Glass Fiber Polymer Matrix Composite Blades,” American Society for Composites 30th Annual Technical Conference, East Lansing, MI, 2015.
  2. Wang, Y.*, & Zhupanska, O. I., “Evaluation of the Thermal Damage in Glass Fiber Polymer-Matrix Composites in Wind Turbine Blades Subjected to Lightning Strike,” American Society for Composites 29th Annual Technical Conference, San Diego, CA, 2014.
  3. Hill, C. B., Wang, Y., & Zhupanska, O. I.*, “Impact Response of CFRP Laminates with CNT Buckypaper Layers,” 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, Boston, MA, 2013.
  4. Hill, C. B., Wang, Y., & Zhupanska, O. I.*, “Effects of Carbon Nanotube Buckypaper Layers on the Electrical and Impact Response of IM7/977-3 Composite Laminates”, American Society for Composites 27th Annual Technical Conference, Arlington TX, 2012 (received the Best Paper Award).